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A Failing Proof by Induction
length of a list 
(tail-recursive)

equivalent to the built-
in length function?

Mismatch between induction 
hypothesis and conclusion!

May as well 
give up!



Generalising the Induction

Insert a universal 
quantifier

Induction hypothesis 
holds for all n
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Generalising: Another Way

Designate a variable 
as “arbitrary”

Induction hypothesis 
still holds for all n!
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Unusual Recursions

Two variables in 
the recursion!

Two variables in 
the induction!

A special induction rule!

The subgoals follow 
the recursion!
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Recursion: Key Points

• Recursion in one variable, following the structure 
of a datatype declaration, is called primitive.

• Recursion in multiple variables, terminating by size 
considerations, can be handled using fun.

• fun produces a special induction rule.

• fun can handle nested recursion.

• fun also handles pattern matching, which it 
completes.
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Special Induction Rules

• They follow the function’s recursion exactly.

• For Ackermann, they reduce P x y to

• P 0 n,  for arbitrary n

• P (Suc m) 0  assuming P m 1, for arbitrary m

• P (Suc m) (Suc n)  assuming P (Suc m) n and 
P m (ack (Suc m) n), for arbitrary m and n

• Usually they do what you want. Trial and error is 
tempting, but ultimately you will need to think!
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Another Unusual Recursion

2 induction hypotheses, 
guarded by conditions!

recursive calls are 
guarded by conditions



set (merge (x#xs) (y#ys)) = set (x # xs) ∪ set (y # ys)

set (if x ≤ y then x # merge xs (y#ys) 
              else y # merge (x#xs) ys)          =   ...
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The Case Expression

• Similar to that found in the functional language ML.

• Automatically generated for every datatype.

• The simplifier can (upon request!) perform case-
splits analogous to those for “if”.

• Case splits in assumptions (not the conclusion) 
never happen unless requested.
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fun ordered :: "'a list => bool"
where
  "ordered [] = True"
| "ordered [x] = True"
| "ordered (x#y#xs) = (x≤y & ordered (y#xs))"



Case-Splits for Lists

fun ordered :: "'a list => bool"
where
  "ordered [] = True"
| "ordered [x] = True"
| "ordered (x#y#xs) = (x≤y & ordered (y#xs))"

fun ordered :: "'a list => bool"
where
  "ordered [] = True"
| "ordered (x#l) = 
    (case l of [] => True
      | Cons y xs => (x≤y & ordered y#xs)))"
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Case-Splitting in Action
Automatic case 

splitting to the rescue!

Help! Look at all 
the case-splits!
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Completing the Proof

All solved, in 
two seconds.

But what is this? 
Risk of looping!
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Case Splitting for Lists
Simplification will replace

P (case xs of [] => a | Cons h tl => b h tl)

by

(xs =[] ➝ P a) ∧ (∀h tl. xs = h # tl ➝ P (b h tl))

• It creates a case for each datatype constructor.

• Here it causes looping if combined with the second 
rewrite rule for ordered.
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Summary

• Many forms of recursion are available.

• The supplied induction rule often leads to simple 
proofs.

• The “case” operator can often be dealt with using 
automatic case splitting...

• but complex simplifications can run forever!



A Helpful Tip


