
Interactive Formal Verification
4: Advanced Recursion,

Induction and Simplification
Tjark Weber

(Slides: Lawrence C Paulson)
Computer Laboratory

University of Cambridge

A Failing Proof by Induction

A Failing Proof by Induction
length of a list
(tail-recursive)

A Failing Proof by Induction
length of a list
(tail-recursive)

equivalent to the built-
in length function?

A Failing Proof by Induction
length of a list
(tail-recursive)

equivalent to the built-
in length function?

Mismatch between induction
hypothesis and conclusion!

A Failing Proof by Induction
length of a list
(tail-recursive)

equivalent to the built-
in length function?

Mismatch between induction
hypothesis and conclusion!

May as well
give up!

Generalising the Induction

Insert a universal
quantifier

Induction hypothesis
holds for all n

Generalising: Another Way

Generalising: Another Way

Designate a variable
as “arbitrary”

Generalising: Another Way

Designate a variable
as “arbitrary”

Induction hypothesis
still holds for all n!

Unusual Recursions

Unusual Recursions

Two variables in
the recursion!

Unusual Recursions

Two variables in
the recursion!

Two variables in
the induction!

Unusual Recursions

Two variables in
the recursion!

Two variables in
the induction!

A special induction rule!

Unusual Recursions

Two variables in
the recursion!

Two variables in
the induction!

A special induction rule!

The subgoals follow
the recursion!

Recursion: Key Points

Recursion: Key Points

• Recursion in one variable, following the structure
of a datatype declaration, is called primitive.

Recursion: Key Points

• Recursion in one variable, following the structure
of a datatype declaration, is called primitive.

• Recursion in multiple variables, terminating by size
considerations, can be handled using fun.

• fun produces a special induction rule.

• fun can handle nested recursion.

• fun also handles pattern matching, which it
completes.

Special Induction Rules

Special Induction Rules

• They follow the function’s recursion exactly.

Special Induction Rules

• They follow the function’s recursion exactly.

• For Ackermann, they reduce P x y to

• P 0 n, for arbitrary n

• P (Suc m) 0 assuming P m 1, for arbitrary m

• P (Suc m) (Suc n) assuming P (Suc m) n and
P m (ack (Suc m) n), for arbitrary m and n

Special Induction Rules

• They follow the function’s recursion exactly.

• For Ackermann, they reduce P x y to

• P 0 n, for arbitrary n

• P (Suc m) 0 assuming P m 1, for arbitrary m

• P (Suc m) (Suc n) assuming P (Suc m) n and
P m (ack (Suc m) n), for arbitrary m and n

• Usually they do what you want. Trial and error is
tempting, but ultimately you will need to think!

Another Unusual Recursion

Another Unusual Recursion
recursive calls are

guarded by conditions

Another Unusual Recursion

2 induction hypotheses,
guarded by conditions!

recursive calls are
guarded by conditions

set (merge (x#xs) (y#ys)) = set (x # xs) ∪ set (y # ys)

set (if x ≤ y then x # merge xs (y#ys)
 else y # merge (x#xs) ys) = ...

=
(x ≤ y ➝ set(x # merge xs (y#ys)) = ...) &
(¬ x ≤ y ➝ set(y # merge (x#xs) ys) = ...)

=
(x ≤ y ➝ {x} ∪ set(merge xs (y#ys)) = ...) &
(¬ x ≤ y ➝ {y} ∪ set(merge (x#xs) ys) = ...)

=
(x ≤ y ➝ {x} ∪ set xs ∪ set (y # ys) = ...) &
(¬ x ≤ y ➝ {y} ∪ set (x # xs) ∪ set ys = ...)

Proof Outline

set (merge (x#xs) (y#ys)) = set (x # xs) ∪ set (y # ys)

set (if x ≤ y then x # merge xs (y#ys)
 else y # merge (x#xs) ys) = ...

=
(x ≤ y ➝ set(x # merge xs (y#ys)) = ...) &
(¬ x ≤ y ➝ set(y # merge (x#xs) ys) = ...)

=
(x ≤ y ➝ {x} ∪ set(merge xs (y#ys)) = ...) &
(¬ x ≤ y ➝ {y} ∪ set(merge (x#xs) ys) = ...)

=
(x ≤ y ➝ {x} ∪ set xs ∪ set (y # ys) = ...) &
(¬ x ≤ y ➝ {y} ∪ set (x # xs) ∪ set ys = ...)

Proof Outline

set (merge (x#xs) (y#ys)) = set (x # xs) ∪ set (y # ys)

set (if x ≤ y then x # merge xs (y#ys)
 else y # merge (x#xs) ys) = ...

=
(x ≤ y ➝ set(x # merge xs (y#ys)) = ...) &
(¬ x ≤ y ➝ set(y # merge (x#xs) ys) = ...)

=
(x ≤ y ➝ {x} ∪ set(merge xs (y#ys)) = ...) &
(¬ x ≤ y ➝ {y} ∪ set(merge (x#xs) ys) = ...)

=
(x ≤ y ➝ {x} ∪ set xs ∪ set (y # ys) = ...) &
(¬ x ≤ y ➝ {y} ∪ set (x # xs) ∪ set ys = ...)

Proof Outline

set (merge (x#xs) (y#ys)) = set (x # xs) ∪ set (y # ys)

set (if x ≤ y then x # merge xs (y#ys)
 else y # merge (x#xs) ys) = ...

=
(x ≤ y ➝ set(x # merge xs (y#ys)) = ...) &
(¬ x ≤ y ➝ set(y # merge (x#xs) ys) = ...)

=
(x ≤ y ➝ {x} ∪ set(merge xs (y#ys)) = ...) &
(¬ x ≤ y ➝ {y} ∪ set(merge (x#xs) ys) = ...)

=
(x ≤ y ➝ {x} ∪ set xs ∪ set (y # ys) = ...) &
(¬ x ≤ y ➝ {y} ∪ set (x # xs) ∪ set ys = ...)

Proof Outline

set (merge (x#xs) (y#ys)) = set (x # xs) ∪ set (y # ys)

set (if x ≤ y then x # merge xs (y#ys)
 else y # merge (x#xs) ys) = ...

=
(x ≤ y ➝ set(x # merge xs (y#ys)) = ...) &
(¬ x ≤ y ➝ set(y # merge (x#xs) ys) = ...)

=
(x ≤ y ➝ {x} ∪ set(merge xs (y#ys)) = ...) &
(¬ x ≤ y ➝ {y} ∪ set(merge (x#xs) ys) = ...)

=
(x ≤ y ➝ {x} ∪ set xs ∪ set (y # ys) = ...) &
(¬ x ≤ y ➝ {y} ∪ set (x # xs) ∪ set ys = ...)

Proof Outline

The Case Expression

The Case Expression

• Similar to that found in the functional language ML.

The Case Expression

• Similar to that found in the functional language ML.

• Automatically generated for every datatype.

The Case Expression

• Similar to that found in the functional language ML.

• Automatically generated for every datatype.

• The simplifier can (upon request!) perform case-
splits analogous to those for “if”.

The Case Expression

• Similar to that found in the functional language ML.

• Automatically generated for every datatype.

• The simplifier can (upon request!) perform case-
splits analogous to those for “if”.

• Case splits in assumptions (not the conclusion)
never happen unless requested.

Case-Splits for Lists

Case-Splits for Lists

fun ordered :: "'a list => bool"
where
 "ordered [] = True"
| "ordered [x] = True"
| "ordered (x#y#xs) = (x≤y & ordered (y#xs))"

Case-Splits for Lists

fun ordered :: "'a list => bool"
where
 "ordered [] = True"
| "ordered [x] = True"
| "ordered (x#y#xs) = (x≤y & ordered (y#xs))"

fun ordered :: "'a list => bool"
where
 "ordered [] = True"
| "ordered (x#l) =
 (case l of [] => True
 | Cons y xs => (x≤y & ordered y#xs)))"

Case-Splitting in Action

Help! Look at all
the case-splits!

Case-Splitting in Action
Automatic case

splitting to the rescue!

Help! Look at all
the case-splits!

Completing the Proof

Completing the Proof

All solved, in
two seconds.

Completing the Proof

All solved, in
two seconds.

But what is this?
Risk of looping!

Case Splitting for Lists
Simplification will replace

P (case xs of [] => a | Cons h tl => b h tl)

by

(xs =[] ➝ P a) ∧ (∀h tl. xs = h # tl ➝ P (b h tl))

Case Splitting for Lists
Simplification will replace

P (case xs of [] => a | Cons h tl => b h tl)

by

(xs =[] ➝ P a) ∧ (∀h tl. xs = h # tl ➝ P (b h tl))

• It creates a case for each datatype constructor.

Case Splitting for Lists
Simplification will replace

P (case xs of [] => a | Cons h tl => b h tl)

by

(xs =[] ➝ P a) ∧ (∀h tl. xs = h # tl ➝ P (b h tl))

• It creates a case for each datatype constructor.

• Here it causes looping if combined with the second
rewrite rule for ordered.

Summary

Summary

• Many forms of recursion are available.

Summary

• Many forms of recursion are available.

• The supplied induction rule often leads to simple
proofs.

Summary

• Many forms of recursion are available.

• The supplied induction rule often leads to simple
proofs.

• The “case” operator can often be dealt with using
automatic case splitting...

Summary

• Many forms of recursion are available.

• The supplied induction rule often leads to simple
proofs.

• The “case” operator can often be dealt with using
automatic case splitting...

• but complex simplifications can run forever!

A Helpful Tip

