Interactive Formal Verification
4: Advanced Recursion,
Induction and Simplification

Tjark Weber
(Slides: Lawrence C Paulson)
Computer Laboratory
University of Cambridge

A Failing Proof by Induction

Demolist.thy

WO X 4P Y-~ = 6P

fun itlen ::
|
lemma
apply (induct xs)

/ auto
[]

-u-:**- DemoList.thy 42% L35 (Isar Utoks Abbrev; Scripting)
proof (prove): step 2

goal (1 subgoal):
1. Axs. itlen xs n = size xs + n = itlen xs (Suc n) = Suc (size xs + n)

Top L1 (Isar Proofstate Utoks Abbrev;)

A Failing Proof by Induction

® OO

R I LA MAN B length of a list
(tail-recursive)

fun itlen ::

l | | el

lenma "itlen xs n = s
apply (induct xs)
apply auto

P 00pS

/ A
LA AT

-u-:**- DemolList.thy 42% L35 (Isar Utoks Abbrev; Scripting)

proof (prove): step 2

goal (1 subgoal):
1. Axs. itlen xs n = size xs + n = itlen xs (Suc n) = Suc (size xs + n)

Top L1 (Isar Proofstate Utoks Abbrev;)

A Failing Proof by Induction

& N N Demoli

AR I LA NN B |ength of a list
(tail-recursive)
fun itlen :: "'a list => gt =>TTAC WHElc

"1tlen Nil n = n"
| "itlen (Cons x xs) n = itlen xs (Suc n)-

equivalent to the built-

lemma "itlen xs n = size xs + n" . .)
BTNt in length function!

apply auto
P 00ps

-u-:**- DemoList.thy 42% L35 (Isar Utoks Abbrev; Scripting)

proof (prove): step 2

goal (1 subgoal):
1. Axs. itlen xs n = size xs + n = itlen xs (Suc n) = Suc (size xs + n)

Top L1 (Isar Proofstate Utoks Abbrev;)

A Failing Proof by Induction

®0OO0 - Sl
R I AR AN Bs length of a list
(tail-recursive)

fun itlen :: "'a list => pr
"1tlen N1l n = n"

I P cqUivalent to the built-

lemma "itlen xs n = size xs + n" . . ?
apply (induct xs) in length function!

apply auto
» o00ps

-u-:**- DemoList.thy 42% L35 (Isar Utoks Abbrev; Scripting)

proof (prove): step 2

goal (1 subgoal):
1. Axs. itlen xs n = size xs + n = itlen xs (Suc n) = Suc (size xs + n)

Mismatch between induction
hypothesis and conclusion!

A Failing Proof by Induction

® 00 . ist th

R I AR AN Bs length of a list

(tail-recursive)

fun itlen :: "'a list => x
"1tlen N1l n = n"

| "itlen (Cons x xs) n = itlen xs (Suc n)/ equivalent to the bUiIt-

lemma "itlen xs n = size xs + n" . . ?
OBV (ndicts) in length function!

apply auto
P oops

-u-:**- DemolList.thy 42% L35 (Isar Utoks Abbrev; Scripting)

proof (prove): step 2

goal (1 subgoal):
May as We” 1. Axs. itlen xs n = size xs + n = itlen xs (Suc n) = Suc (size xs + n)

give up!

Mismatch between induction
hypothesis and conclusion!

Generalising the Induction

OO0 s Demolist.thy

QX 4P Y. .00 o o P

, Insert a universal
fun itlen :: "'o ,
"itlen Nil n = quant|ﬁer

| "itlen (Con:

lemma "Yn. itlen xs n = size xs + n"
apply (induct xs)
» apply auto
done A

-u-:--- DemoList.thy 38% L41 (Isar Utoks Abbrev; Scripting)========ececeaau--

proof (prove): step 1 Induction hypothesis

goal (2 subgoals): holds for all n
1. VYn. itlen Nil n = size Nil + n

2. N\a xs.
Vn. itlen xs n = size xs + n =
vn. itlen (Cons a xs) n = size (Cons a xs) + n

4

-u-:%%- *goals* Top L1 (Isar Proofstate Utoks Abbrev;)------ccccccccaaa-
(No changes need to be saved)

/
/4

Generalising: Another Way

» Demolist.thy

QO Z 4P Y »Mg..- 60w o 6 ¢

fun itlen ::
I

lemma
apply (induct xs arbitrary: n)
/ auto
done

-u-:--- DemoList.thy 38% L41 (Isar Utoks Abbrev; Scripting)
proof (prove): step 1

goal (2 subgoals):
1. An. itlen Nil n = size Nil + n
2. Na xs n.
(An. itlen xs n = size xs + n) =
itlen (Cons a xs) n = size (Cons a xs) + n

-u-:%%- *goals* Top L1 (Isar Proofstate Utoks Abbrev;)
Wrote /Users/1pl5/Dropbox/ACS/1 - Introduction/DemolList.thy

Generalising: Another Way

N N M

» Demolist.thy

DO X A4P Y g 0w < 6P

fun itlen :: "'a list = nat = nat" Wil DIENRERVETG o] (<

A
s 4+1an N3
LETN .

"Ll an ‘/'rA ~ IP ve) L 1o v r . ” (4§ ° 99
| "itlen (Cons x Xs) n l1tlen xs (Suc | as arb|trar~y

lemma "itlen xs n = size xXs + n/
apply (induct xs arbitrary: n)
» apply auto
done

-u-:--- DemolList.thy 38% L41 (Isar Utoks Abbrev; Scripting)

proof (prove): step 1

goal (2 subgoals):
1. An. itlen Nil n = size Nil + n
2. A\a xs n.
(An. itlen xs n = size xs + n) =
itlen (Cons a xs) n = size (Cons a xs) + n

-u-:%%- *goals* Top L1 (Isar Proofstate Utoks Abbrev;)
Wrote /Users/1pl5/Dropbox/ACS/1 - Introduction/DemolList.thy

Generalising: Another Way

212l

» Demolist.thy

QO X 4> Y. o0 = 6 F

R ORI L L. Designate a variable

"1tlen N1l n = n"

| "itlen (Cons x xs) n = itlen xs (Suc 1S “arbitrary”

lemma "itlen xs n = size xS + n,
apply (induct xs arbitrary: n)
» apply auto
done

-u-:--- DemoList.thy 38% L41 (Isar Utoks Abbrev; Scripting)========eceeea--

—
0

4

proof (prove): step 1 Induction hypothesis

goal (2 subgoals): still holds for all n!
1. An. itlen Nil n = size Nil + n
2. A\a xs n.

(An. itlen xs n = size xs + n) =

itlen (Cons a xs) n = size (Cons a xs) + n

-u-:%%- *goals* Top L1 (Isar Proofstate Utoks Abbrev;)
Wrote /Users/1pl5/Dropbox/ACS/1 - Introduction/DemolList.thy

Unusual Recursions

> Primrec.thy

O X A4P»P YIEE-0w = 6P

P

subsection{* Ackermann's Function *}
fun ack :: where

lemma less_ack2 [iff]:

apply (induct 1 j rule: ack.induct)
Papply auto

-U-:--- Primrec.thy 3% L16 (Isar Utoks Abbrev; Scripting)

proof (prove): step 1

goal (3 subgoals):

1. An. n<ack @ n

2. A\m. 1 <ackml1l = 0 < ack (Suc m) @

3. Am n. [n < ack (Suc m) n; ack (Suc m) n < ack m Cack (Suc m) n)I
= Suc n < ack (Suc m) (Suc n)

-u-:%%- *goals* Top L1 (Isar Proofstate Utoks Abbrev;)
Wrote /Users/1plS5/.emacs

Unusual Recursions

s Primrec.thy

o m N

WX 4> Y r i

Two variables in
the recursion!

fun ack :: "nat => nat => nat.-thef
"ack @ n = Suc n"
| "ack (Suc m) @ = ack m 1"
| "ack (Suc m) (Suc n) = ack m Cack (Suc m)

subsection{* Ackermann's Func

lemma less_ack2 [iff]: "] < ack 1 7"
apply (induct 1 j rule: ack.induct)
Popply auto
-u-:--- Primrec.thy 3% L16 (Isar Utoks Abbrev; Scripting)

proof (prove): step 1

goal (3 subgoals):

1. An. n <ack @ n

2. A\m. 1 <ackml = 0 < ack (Suc m) @

3. Am n. [n < ack (Suc m) n; ack (Suc m) n < ack m Cack (Suc m) n)I
=> Suc n < ack (Suc m) (Suc n)

-u-:%%- *goals* Top L1 (Isar Proofstate Utoks Abbrev;)
Wrote /Users/1pl5/.emacs

Unusual Recursions

s Primrec.thy

Two variables in gRMEE "
the indUCtion! ermann’'s Func

Two variables in
the recursion!

s "nat => nat => nat’-thef

QUANMN) (Suc n) = ack m (ack (Suc m) n)"

lemma less_ax iff]: "j <ack i j"
apply (induct 1 j rule: ack.induct)
Popply auto
-u-:--- Primrec.thy 3% L16 (Isar Utoks Abbrev; Scripting)

proof (prove): step 1

goal (3 subgoals):

1. An. n<ack @ n

2. Am. 1 <ackm1l = 0 < ack (Suc m) 0

3. Am n. [n < ack (Suc m) n; ack (Suc m) n < ack m Cack (Suc m) ndl
= Suc n < ack (Suc m) (Suc n)

"/

A

4

-u-:%%- *goals* Top L1 (Isar Proofstate Utoks Abbrev;)-----=ccccccccaaa-
Wrote /Users/1pl5/.emacs

/
/4

Unusual Recursions

% Primrec.thy

Two variables in gRMEE "
the indUCtion! ermann’'s Func

Two variables in
the recursion!

** "nat => nat => nat.-thefe

m) (Suc n) = ack m Cack (Suc m) n)" A SPeCiaI indUCtion rUIQ!

Popply auto
-u-:=-=-- Primrec.thy

proof (prove): step 1

goal (3 subgoals):

1. An. n<ack @ n

2. Am. 1 <ackm1l = 0 < ack (Suc m) 0

3. Am n. [n < ack (Suc m) n; ack (Suc m) n < ack m Cack (Suc m) ndl
= Suc n < ack (Suc m) (Suc n)

y

A

v

-u-:%%- *goals* Top L1 (Isar Proofstate Utoks Abbrev;)-----=-cccccceaa--
Wrote /Users/1pl5/.emacs

Y/

Unusual Recursions

& Primrec.thy

Two variables in gRMEE "
the indUCtion! ermann’'s Func

Two variables in
the recursion!

** "nat => nat => nat.-thefe

1) (Suc n) = ack m Cack (Suc m) n)" A SPeCiaI indUCtion

lemma less_ax iff]: "j < ack 1 j
apply (induct 1 j rule: ack.induct)
Popply auto

e sy The subgoals follow

proof (prove): step 1 the recursion!

goal (3 subgoals):

1. An. n<ack @ n

2. A\m. 1 <ackml1l = 0 < ack (Suc m) @

3. Am n. [n < ack (Suc m) n; ack (Suc m) n < ack m Cack (Suc m) n)l
= Suc n < ack (Suc m) (Suc n)

-/

A

v

-u-:%%- *goals* Top L1 (Isar Proofstate Utoks Abbrev;)---------=---c----

Wrote /Users/1pl5/.emacs Y
v

Recursion: Key Points

Recursion: Key Points

® Recursion in one variable, following the structure
of a datatype declaration, is called primitive.

Recursion: Key Points

® Recursion in one variable, following the structure
of a datatype declaration, is called primitive.

® Recursion in multiple variables, terminating by size
considerations, can be handled using fun.

fun produces a special induction rule.
fun can handle nested recursion.

fun also handles pattern matching, which it
completes.

Special Induction Rules

Special Induction Rules

® They follow the function’s recursion exactly.

Special Induction Rules

® They follow the function’s recursion exactly.
® For Ackermann, they reduce Px y to
P O n, for arbitrary n
P (Suc m) 0 assuming P m 1, for arbitrary m

P (Suc m) (Suc n) assuming P (Suc m) n and
P m (ack (Suc m) n), for arbitrary m and n

Special Induction Rules

® They follow the function’s recursion exactly.
® For Ackermann, they reduce Px y to
P O n, for arbitrary n
P (Suc m) O assuming P m 1, for arbitrary m

P (Suc m) (Suc n) assuming P (Suc m) n and
P m (ack (Suc m) n), for arbitrary m and n

e Usually they do what you want. Trial and error is
tempting, but ultimately you will need to think!

Another Unusual Recursion

» MergeSort.thy
WO X 4P Y-~ = 6P

fun merge ::
where

lemma set_merge[simp]:

apply(induct xs ys rule: merge.induct)
Papply auto

done

-u-:--- MergeSort.thy 19% L24 (Isar Utoks Abbrev; Scripting)

proof (prove): step 1

goal (3 subgoals):
1. Ax xs y ys.
[x <y = set (merge xs (y # ys)) = set xs U set (y # ys);
= x £y = set (merge (x # xs) ys) = set (x # xs) U set ysl
=> set (merge (x # xs) (y # ys)) = set (x # xs) U set (y # ys)
2. Axs. set (merge xs []) = set xs U set []
3. Av va. set (merge [] (v # va)) = set [] v set (v # va)

-u-:%%- *goals* Top L1 (Isar Proofstate Utoks Abbrev;)
Wrote /Users/1pl5/Dropbox/ACS/4 - Advanced Recursion/MergeSort.thy

Another Unusual Recursion

000 s MergeSort.thy recursive calls are
guarded by conditions

@000:<>1>4ﬂ,_0w:6!

fun merge ::
where

PR
K- (=
mANAn Yo
l ! Ut Ao

o ¢ <
I C LS VIS

lemma set_merge[simp]: et (merge xs ys)
apply(induct xs ys rule merge induct)
»apply auto
done
-u-:--- MergeSort.thy 19% L24 (Isar Utoks Abbrev; Scripting)

proof (prove): step 1

goal (3 subgoals):
1. Ax xs y ys.
[x <y = set (merge xs (y # ys)) = set xs U set (y # ys);
= x £y = set (merge (x # xs) ys) = set (x # xs) U set ysl
=> set (merge (x # xs) (y # ys)) = set (x # xs) U set (y # ys)
2. Axs. set (merge xs []) = set xs U set []
3. Av va. set (merge [] (v # va)) = set [] v set (v # va)

-u-:%%- *goals* Top L1 (Isar Proofstate Utoks Abbrev;)
Wrote /Users/1pl5/Dropbox/ACS/4 - Advanced Recursion/MergeSort.thy

Another Unusual Recursion

000 s MergeSort.thy recursive calls are
RS B NAR BN AR R cuarded by conditions

fun merge :: "'a list = 'a list = 'a list"
where
"merge (x#xs) (y#ys) =
(1f x < y then x # merge xs (y#ys) else y # merge (x#xs) ys)"
| "merge xs [] = xs"
| "merge [] ys = ys"

lemma set_merge[simp]: "set (merge xs ys) = set xs U set ys"
apply(induct xs ys rule: merge.induct)

Papply auto
done

-u-:--- MergeSort.thy 19% L

2 induction hypotheses,
guarded by conditions!

proof (prove): step 1

goal (3 subgoals):
1. Ax xs y ys.
[x <y = set (merge xs (y # ys)) = set xs U set (y # ys);
= x £y = set (merge (x # xs) ys) = set (x # xs) U set ysl
=> set (merge (x # xs) (y # ys)) = set (x # xs) U set (y # ys)
2. Axs. set (merge xs []) = set xs U set []
3. Av va. set (merge [] (v # va)) = set [] U set (v # va)

-u-:%%- *goals* Top L1 (Isar Proofstate Utoks Abbrev;)
Wrote /Users/1pl5/Dropbox/ACS/4 - Advanced Recursion/MergeSort.thy

Proof Outline

set (merge (x#xs) (y#ys)) = set (x # xXs) U set (y # ys)

set (if x = y then x # merge xs (y#ys)
else y # merge (xX#xXs) ys)

(X =y — set(x # merge xs (y#ys)) = ...
(7" x =y 2 set(y # merge (X#xXs) ys) = ...

X y @ {x} U set(merge xs (y#ys)) = ...
- <=y — {y} U set(merge (x#xs) ys)

y @ {x} U set xs U set (y # ys) = ...
=y = {y} U set (x # xs) U set ys

Proof Outline

set (merge (x#xs) (v#ys)) = set (x # xXs) U set (y # ys)

set (if x = y then x # merge xs (y#ys)
else y # merge (xX#xXs) ys)

(X =y — set(x # merge xs (y#ys)) = ...
(7" x =y 2 set(y # merge (X#xXs) ys) = ...

X y @ {x} U set(merge xs (y#ys)) = ...
B =y = {y} U set(merge (x#xs) ys)

y @ {x} U set xs U set (y # ys) = ...
=y = {y} U set (x # xs) U set ys

Proof Outline

set (merge (x#xs) (v#ys)) = set (x # xXs) U set (y # ys)

set (if x = y then x # merge xs (y#ys)
else y # merge (X#xXs) ys)

(X <=y — set(x # merge xs (y#ys)) = ...
(7" x =y 2 set(y # merge (X#xXs) ys) = ...

Xx =y 2 {xX} U set(merge xs (y#ys)) = ...
B =y = {y} U set(merge (x#xs) ys)

y @ {X} U set xs U set (y # ys) = ...
=y {y} U set (x # xs) U set ys

Proof Outline

set (merge (x#xs) (v#ys)) = set (x # xXs) U set (y # ys)

set (if x = y then x # merge xs (y#ys)
else y # merge (X#xXs) ys)

(X =y set(x # merge xXs (y#ys)) = ...
(" X =y = set(y # merge (X#Xs) ys) = ...

— {x} U set(merge xs (y#ys)) = ...
y @ {y} U set(merge (X#xs) ys)

{x} U set xs U set (y # ys) = ...
— {y} U set (x # xs) U set ys

Proof Outline

set (merge (x#xs) (v#ys)) = set (x # xXs) U set (y # ys)

set (if x = y then x # merge xs (y#ys)
else y # merge (X#xXs) ys)

(X =y set(x # merge xXs (y#ys)) = ...
(" X =y = set(y # merge (X#Xs) ys) = ...

— {x} U set(merge xs (y#ys)) = ...
y @ {y} U set(merge (xX#xs) ys)

{x} U set xs U set (y # ys) = ...
— {y} U set (x # xs) U set ys

The Case Expression

The Case Expression

® Similar to that found in the functional language ML.

The Case Expression

® Similar to that found in the functional language ML.

® Automatically generated for every datatype.

The Case Expression

® Similar to that found in the functional language ML.
® Automatically generated for every datatype.

® The simplifier can (upon request!) perform case-
splits analogous to those for “if”.

The Case Expression

Similar to that found in the functional language ML.
Automatically generated for every datatype.

The simplifier can (upon request!) perform case-
splits analogous to those for “if”.

Case splits in assumptions (not the conclusion)
never happen unless requested.

Case-Splits for Lists

Case-Splits for Lists

fun ordered :: "'a list => bool"”
where
"ordered [] = True"
| "ordered [x] = True"
| "ordered (x#y#xs) = (x=<y & ordered (y#xs))"

Case-Splits for Lists

fun ordered :: "'a list => bool"
where
"ordered [] = True"
| "ordered (x#l) =
(case 1 of [] => True
| Cons y xs => (x=y & ordered y#xs)))"

Case-Splitting in Action

QO ZEZ 4P Y. 0w o o6 P

lemma ordered_merge [simp]: "ordered (merge xs ys) = (ordered xs & or
apply (induct xs ys rule: merge.induct)
apply simp_all
P apply Cauto split: list.split
-u-:--- MergeSort.thy 52% L27 (Isar Utoks Abbrev; Scripting)
goal (1 subgoal):
1. Ax xs y ys.
x <=y =
ordered (merge xs (y # ys)) =

(ordered xs A
(case ys of [J] = True | ya # xs = y = ya A ordered (ya # xs)));

- < —
HeIP' LOOk at a-” or:erez (merge (x # xs) ys) =

(case xs of [J = True | v # xs & x = y A ordered (y # xs)) A

the case-splits! ordered ys)l

— (x < y S

(case merge xs (y # ys) of [] = True
| v # xs ® x £y A ordered (y # xs)) =
(case xs of [] = True | v # xs ® x £ y A ordered (y # xs)) A
(case ys of [] = True
| ya # xs ® y £ ya A ordered (ya # xs)))) A

(-| X = y .

(case merge (x # xs) ys of [] = True
| ya # xs ® y = ya A ordered (ya # xs)) =

((case xs of [] = True | v # xs = x £ y A ordered (y # xs)) A
(case ys of [] = True | ya # xs = y = ya A ordered (ya # xs))))

-u-:%%- *goals* 2% L4 (Isar Proofstate Utoks Abbrev;)
Wrote /Users/1pl5/Dropbox/ACS/4 - Advanced Recursion/MergeSort.thy

Case-Splitting in Action

OO0 5 MergeSort.thy

"‘ "';‘ °
RN NAE BN N4 Automatic case
lemma ordered_merge [simp]: "ordered (merge xs ys

apply (induct xs ys rule: merge.induct) SPIlttlng to the rescue!

apply simp_all
P apply Cauto split: list.split
-u-:--- MergeSort.thy 52% L27 (Isar Utoks Abbrev; Scripting)
goal (1 subgoal):
1. Ax xs y ys.
x <=y =
ordered (merge xs (y # ys)) =
(ordered xs A

(case ys of [] = True | ya # xs = y < ya A ordered (ya # xs)));
Help! Look at all el Jr

P- ordered (merge (x # xs) ys) =
(case xs of []J = True | v # xs ® x = y A ordered (y # xs)) A

the case-splits! ordered ys)l

~ — (x < y S
\ (case merge xs (y # ys) of [] = True
\ | v # xs ® x £ y A ordered (y # xs5)) =
(case xs of [] = True | v # xs ® x £ y A ordered (y # xs)) A
(case ys of [] = True
| ya # xs ® y = ya A ordered (ya # xs)))) A
(ﬂ X = y -,
(case merge (x # xs) ys of [] = True
| ya # xs ® y = ya A ordered (ya # xs)) =
((case xs of [] = True | v # xs = x £ y A ordered (y # xs)) A
(case ys of [] = True | ya # xs = y = ya A ordered (ya # xs))))

-u-:%%- *goals* 2% L4 (Isar Proofstate Utoks Abbrev;)
Wrote /Users/1pl5/Dropbox/ACS/4 - Advanced Recursion/MergeSort.thy

Completing the Proof

MergeSort.thy
QX A4P Y HEg.o 0w < 6 F

lemma ordered_merge [simp]:
apply (induct xs ys rule: merge.induct)
apply simp_all
apply (auto split: list.split
simp del: ordered.simps(2))
-u-:--- MergeSort.thy 54% L28 (Isar Utoks Abbrev; Scripting)

proof (prove): step 3

goal:
No subgoals!

Top L1 (Isar Proofstate Utoks Abbrev;)

Completing the Proof

! ! | \

» MergeSort.thy
QO ZEZ 4P Y. 0w o o6 P

lemma ordered_merge [simp]: "ordered (merge xs ys) = (ordered xs & or
apply (induct xs ys rule: merge.induct)
apply simp_all
apply Cauto split: list.split
simp del: ordered.simps(2))
-u-:--- MergeSort.thy 54% L28 (Isar Utoks Abbrev; Scripting)

proof (prove): step 3

goal:
No subgoals!

All solved, in
two seconds.

Top L1 (Isar Proofstate Utoks Abbrev;)

Completing the Proof

OO0 5 MergeSort.thy

QO ZEZ 4P Y. 0w o o6 P

lemma ordered_merge [simp]: "ordered (merge xs ys) = (ordered xs & ordered ys)"
apply (induct xs ys rule: merge.induct)
apply simp_all
apply Cauto split: list.split
simp del: ordered.simps(2))
-u-:--- MergeSort.thy 54% L28 (Ikar Utoks Abbrev; Scripting)

proof (prove): step 3

goal: But what is this?
Risk of looping!

No subgoals!

All solved, in
two seconds.

-u- %%~ Top L1 (Isar Proofstate Utoks Abbrev;)

v

Case Splitting for Lists

Simplification will replace
P (case xs of [] => a | Cons htl => bhtl)

by
(xs=[]1 > Pa)A(Vhtl. xs=h#tl > P (b htl))

Case Splitting for Lists

Simplification will replace

P (case xs of [] => a | Cons htl => bhtl)

by
(xs=[]1 > Pa)A(Vhtl. xs=h#tl > P (b htl))

® |t creates a case for each datatype constructor.

Case Splitting for Lists

Simplification will replace

P (case xs of [] => a | Cons htl => bhtl)

by
(xs=[]1 > Pa)A(Vhtl. xs=h#tl > P (b htl))

® |t creates a case for each datatype constructor.

® Here it causes looping if combined with the second
rewrite rule for ordered.

Summary

Summary

® Many forms of recursion are available.

Summary

® Many forms of recursion are available.

® The supplied induction rule often leads to simple
proofs.

Summary

Many forms of recursion are available.

The supplied induction rule often leads to simple
proofs.

The “case” operator can often be dealt with using
automatic case splitting...

Summary

Many forms of recursion are available.

The supplied induction rule often leads to simple
proofs.

The “case” operator can often be dealt with using
automatic case splitting...

but complex simplifications can run forever!

A Helpful Tip

acs File Edit Options Tools WEELEIEE F s Tokens Buffers Help

eno - Logics
Commands
Show Me

lemma ordered_merge [simp]: “ordered (merge)}
apply (induct xs ys rule: merge.induct) Favourites

pind bl Settings > |
apply Couto split: list.split Settings v Use Lmear Undo

: se Find Theorems Form
sinp del: ordered.simps(2)) Start Isabelle (C-c C~s) i 20

Exit Isabelle (C-c C-x) Display B
proof (prove): step 3 Set Isabelle Command Advanced Display 3
y , IR ¢ Ao Nitpick
fﬂ"bgms, Help | » Auto Solve Time Limit
|
E v Auto Solve
Reset Settings v Auto Quickcheck
Save Settings Auto Counterexample Time Limit
Theorem Dependencies
Debugging
Clobal Timing
Trace Unification
Trace Rules
Trace Simplifier Depth
TracerSimplifier

S~
-

-u-:%%- *goals* Top L1 (Isar Proofstate Utoks Abbrev;)--------=-eceeeaax

’
S

